Рег-ция: 20.04.2009 Сообщения: 364 Благодарности: 7 Поблагодарили 4 раз(а) в 4 сообщениях | Ответ: Аксиоматизация и начала теории пространства как ИКЖ. Цитата: author=usachevvm Релятивизм утверждает, что ЭМ энергия ускорителя идёт на увеличение "релятивистской массы" протона в 7000 раз, по сравнению с его массой покоя. Исходя из аксиоматизации и начал теории пространства как идеальной квантовой жидкости энергия ЭМ поля БАКа идёт на образование из ИКЖ пространства при движении в ней с ускорением субсветового протона новых короткоживущих частиц и квантов широкого диапазона излучения, согласно системе уравнений(1) закона сохранения и превращения массы-энергии: hy=us=mc^2. Вот и вся "энергетическая часть вопроса". | А ниже экспериментальное подтверждение вышесказанного: Цитата: ="usachevvm2" Цитата: ="DVN"] Усачев, а чего это эти образующиеся частицы никто не регистрирует, а? Вы бы подсказали физикам - нехрен, мол, встречный пучок пускать, хватит и одного, разогнать побыстрее и частиц понаделается, только детекторы подставляй!!. | Они образуют с протоном нечто подобное голове кометы, керном которой является сам субсветовой протон. При столкновении весь этот ком разлетается: Цитата: если протон летит со скоростью, очень близкой к скорости света, то глюонное поле в нём перестает быть просто связывающей силой, но материализуется в виде потока частиц — глюонов, — которые летят рядом с кварками. Можно считать, что быстро летящий протон состоит из перемешанных друг в друге глюонных, кварковых и даже антикварковых «облаков» — партонных плотностей. При очень больших энергиях протон оказывается заполненным в основном глюонами, а кварков и антикварков в нём заметно меньше. Протоны и антипротоны в таких условиях выглядят практически одинаково, и поэтому нет особой разницы, что сталкивать — протоны с протонами (как на LHC) или протоны с антипротонами (как на коллайдере Тэватрон). (Подробнее про партонные плотности в протоне) Когда два протона сталкиваются лоб в лоб, то это вовсе не значит, что каждый партон обязательно ударяется обо что-то внутри встречного протона. Обычно всё происходит проще — один кварк из одного протона сталкивается с кем-то из встречного протона, а остальные партоны просто пролетают мимо. Столкнувшиеся друг с другом партоны получают сильный «удар», выбивающий их из родительских протонов. Однако глюонное поле обладает важным свойством — конфайнментом, который не позволяет кваркам улететь просто так. Вместо этого происходит адронизация — энергия удара тратится на рождение многочисленных адронов. Именно из-за адронизации протон-протонное столкновение так сильно отличается от электрон-позитронного. В этом процессе партоны-«наблюдатели» уже принимают самое активное участие. (Подробнее про конфайнмент и процесс адронизации) Как правило, удар по партону получается в основном продольный, а не поперечный. В результате адроны рождаются преимущественно с большими продольными и маленькими поперечными импульсами. Из-за этого типичное протон-протонное столкновение выглядит примерно так: В типичном протон-протонном столкновении при высоких энергиях рождается множество адронов. Угловое распределение их разлета не изотропно, а «прижато» к оси столкновений. (Рис. И. Иванова) В типичном протон-протонном столкновении при высоких энергиях рождается множество адронов. Угловое распределение их разлета не изотропно, а «прижато» к оси столкновений. (Рис. И. Иванова) Здесь схематично показан процесс множественного рождения адронов. Каждый адрон отмечен отдельной стрелкой, причем длина стрелки примерно соответствует импульсу адрона. В результате адроны разлетаются не изотропно во все стороны, как как бы прижаты к оси столкновения. Изредка происходит особенно жесткий процесс, при котором столкнувшиеся партоны получают сильный поперечный удар. Эти партоны вылетают с большим поперечным импульсом, и последствия адронизации в этом случае выглядят так: Иногда происходит жесткое столкновение, и тогда кроме стандартного адронного фона вылетают узкие потоки высокоэнергетических адронов — адронные струи. (Рис. И. Иванова) Иногда происходит жесткое столкновение, и тогда кроме стандартного адронного фона вылетают узкие потоки высокоэнергетических адронов — адронные струи. (Рис. И. Иванова) Рожденные адроны группируются как вдоль оси столкновения, так и вокруг направления вылета жесткого партона. Поток адронов, вылетающих примерно в одинаковом направлении, называется адронной струей. Кроме жесткого рассеяния двух партонов, существуют и другие механизмы рождения струй. Так, в столкновении двух партонов лоб в лоб может родиться очень тяжелая частица (например, Z-бозон), которая затем распадается на два кварка, а они уже порождают струи. Собственно, изучение событий со струями — это и есть один из методов поиска тяжелых нестабильных частиц. Наблюдаются также и многоструйные события. Кинематика протон-протонных столкновений Поскольку партонов внутри протона много, каждый партон несет лишь небольшую долю всей энергии протона. Из-за этого полная энергия столкновения двух партонов получается заметно меньше, чем номинальная энергия протон-протонного столкновения. Например, когда на LHC два протона сталкиваются с энергией 7+7 ТэВ, происходят процессы столкновения партонов, скажем, с энергиями 1+2 ТэВ, или 0,5+0,3 ТэВ, или 0,2+0,05 ТэВ и т. д. Все эти столкновения происходят с некоторой частотой, причем чем меньше энергия, чем чаще они происходят. Именно поэтому увеличение энергии протонов приводит к резкому увеличению сечения многих интересных процессов столкновения. Например, на протон-антипротонном коллайдере Тэватрон тоже происходят столкновения двух партонов с энергией 0,5+0,3 ТэВ, но на LHC они будут происходит на порядки чаще. Из-за того, что распределение частиц не изотропно, а прижато к осям, кинематику частиц на адронных коллайдерах удобно описывать с помощью переменных «быстрота–угол». В таких переменных удобно выделяются разные типы процессов, происходящих в протонных столкновениях. (Подробнее про диаграмму быстрота-угол и ее использование для анализа событий) Трудности изучения протон-протонных столкновений В изучении протон-протонных столкновений есть две главные трудности: одна экспериментальная и одна теоретическая. * В каждом столкновении рождается слишком много частиц. Некоторые из них при этом вообще не попадают в детектор, а «улетают в трубу», так что разобраться в этой мешанине очень трудно. * Теоретики умеют хорошо рассчитывать процессы с отдельными кварками или глюонами, но описать адронизацию из первых принципов пока не удается. Адронизацию приходится учитывать с помощью численного моделирования, и поэтому связь между теорией и экспериментом не столь непосредственна, как, например, в электрон-позитронных столкновениях. Однако есть несколько приемов, позволяющих в этой ситуации всё же узнать немало нового. Во-первых, не все рожденные частицы одинаково «интересны». Самую важную информацию несут частицы с большим поперечным импульсом, то есть струи. Углы вылета и энергия струй «помнят» то жесткое столкновение между кварками или глюонами, которое их породило. Изучая свойства струй, экспериментаторы могут нащупать более тесную связь с теорией. Во-вторых, иногда помимо адронов рождаются и другие частицы с большой энергией — электроны, мюоны, фотоны. Эти частицы не участвуют в сильном взаимодействии, поэтому адронизации им не мешает. Отбирая события с такими частицами, можно изучать гораздо более редкие процессы, чем в исключительно адронных событиях. | | |